Exterior Wall Sheathing

Exterior Shell, The Walls

Prior to starting our wall framing, we checked in with Tim’s dad Kerry for a few tips and pointers on how to go about it all, and he mentioned that he likes to sheathe his walls while they’re still on the floor. It’s a lot easier to line everything up that way, with gravity working on your side. We liked that idea, but were nervous that the walls would be too heavy for us to lift with all that plywood nailed on, so we decided to wait until after the walls were raised to do the sheathing. I am happy we did this because the walls were heavy enough with just the studs; however, if we had easy access to a few more bodies to help on short notice, I would DEFINITELY sheathe the walls while they’re on the floor. It would have been a lot easier.

The first sheet!

The first sheet!

1/2″ standard plywood was our pick for the sheathing rather than OSB because it is lighter, will not soak up as much water, and is generally more durable and strong. Plywood is more expensive, but again, with the tiny house you can choose quality over quantity. Also, if you remember me discussing during the subfloor stage the requirement to orient plywood so that its long edge is perpendicular to the strength axis of what it’s being affixed to – the same applies here. Plywood comes in 4′ x 8′ sheets, and since our vertical wall studs are our strength axes, we made the 8′ side of our plywood sheets run horizontally. Also, like the subfloor, it’s important to stagger your pieces from row to row, like how bricks are laid, so that you don’t get seems lining up and forming major linear weaknesses in your wall.

IMG_20151001_180518Starting at the bottom, we did an entire row all the way around and then did another run above that, working our way up to the top plates. Fortunately, we have scaffolding to work with. I can’t stress enough how much of a blessing it was to not have to work from a ladder and be constantly moving it.

IMG_20151007_132731

We actually cut our pieces of plywood such that the door and the big 6′ window were left open, but all the other windows we sheathed over because it is a lot simpler to just cut them out afterwards. Unfortunately, since the overall length of our long walls is 28’4 1/4″, we couldn’t have nice round 8′ and 4′ pieces the entire way… we had to divide it up a little oddly (three 8′ pieces, and a 4’4 1/4″ at the end; or, two 8′ pieces, a 6′ piece, and a 6’4 1/4″ piece). CONFUSING! Additionally, we also wanted to make sure to maintain the ~1/8″ gap between all the sheets to allow for swelling in the case of moisture absorption. Throw in the desire to minimize waste by using up our scrap pieces, and a seemingly simple job turns into a weird wooden version of Tetris.

IMG_9676IMG_20151001_113537

The process generally involved the following steps:

  1.  Measure the space on the wall – the required length of the sheet going in.
  2.  Transfer that measurement in pencil to both the ends of the plywood sheet (which has been patiently waiting on the saw horses while you took your sweet time double checking the measurement :P)
  3. Snap a chalk line to follow when cutting to size.
  4. Fire up the circular saw and zip off your waste.
  5. Hoist the sheet up to the platform on the scaffolding.
  6. Hold the sheet into position, one person at each end, using your hands, knees, feet, head, whatever works in order to make it straight and square. Simultaneously, wedge a 2 1/2″ nail under each corner between the bottom of your sheet and the top of the one below, to act as a 1/8″ spacer.
  7. Nail the top left corner, the top centre, and the top right corner, quickly but carefully. Leave the nails sticking out a little so you can remove them and re-position if necessary.
  8. Check all four sides for level and square, and that enough space is left on the end stud for the next sheet to join in. If any issues, re-position and try again, with copious curse words.
  9. Permanently nail the sheet in – we used a 6″ nailing pattern on the edges and in the field.

In total, it took us four full, long, draining days to get the sheathing up, but by the end of it we had a structure that somewhat resembled a house. The walls were opaque, relatively sturdy, and you could no longer walk or see through them! At this point, we decided to bring all of our scrap material and tools into our house, organize it all so we knew where to find things, and be as out of the way as possible.

IMG_20151007_131607On October 8th, we cut out our 11 remaining windows, using a reciprocating saw. This was harder than it looked, and you have to have some serious upper body strength to wield that tool overhead for extended periods of time. We wanted to cut the windows out from the inside so that we could see exactly where the perimeter studs were located, so we used a ladder inside the structure to get at the windows.

IMG_9719

It’s funny how exciting and joyful new chapters on this build are, and to notice how they become more routine and easy as they approach their close. In addition, each new task brings renewed enthusiasm, but a sort that only lasts a short time. The focus and commitment required to finish each task after the sparkly beginning wears off can often be draining. And the draining feeling seems to be cumulative. During the first month of the build it was easy to bounce back from challenges and get immersed in each new task as it presented itself. As time marches on for this project, it seems harder to keep on initiating the new tasks because we have obtained a very clear understanding that (A) things always take a lot longer than you expect and (B) things will likely not go smoothly and perfect like they do in the YouTube / instructional video. With that said, it is crucial to not let yourself get bogged down in the frustrating side of reality, and focus on the sparkly part 🙂 It has been really important for us to take little breaks now and again to recharge / switch off from the Tiny House and go be around people who can distract us entirely from the project.

Advertisements

Framing is Complete – The Bones of the Tiny House

Exterior Shell, The Walls

At the time of the last post I wrote, we had the front and back walls built and raised, and needed to complete the smaller left and right walls. Well we finished everything on Friday evening, September 25th – a month and five days after our first day at the build. The framing took 8 days in total, and we certainly became more proficient at it as time went on. Here’s a video we made showing all four walls going up!

The first nail (we used 3 1/2″ galvanized nails) I drove took somewhere around 25 smacks… pretty bad accuracy haha. My best now is 5!! On the topic of nails, we weren’t sure how many to get and started out with a mere 10 lbs. These lasted about a day and a half, and we went back to the store and bought an entire box – 50lbs. It is cheaper by almost $30 to buy the whole box compared to the same amount using the per pound rate. Lesson learned! By the end, I estimate we used about 35 pounds for all our framing needs. We also bought 3 lbs of 2 1/2″ galvanized nails for toe-nailing, which was definitely sufficient. Toe-nailing is when you attach a vertical stud to a horizontal plate using a nail on an angle.

IMG_20150924_164401

IMG_20150930_132151

Using Pythagorean theorum to solve for the hypotenuse – our top plate 🙂

Gradually, we relied on the computer model less and less as well, because it was just
easier to decide exactly where the windows were going ourselves based on the centre line of a wall. Once you’ve logically thought all this through, it’s easy to then mark out the studs accordingly. The narrow end walls were interesting to design since they connect two parallel walls of differing heights. The front, high wall, is 10’11” and the lower back wall is 9’8″. This meant that the top plate had to be positioned on a 10° angle, and each stud running from bottom to top had to be a different height. It also meant that each stud connecting with the top plate needed to be angled (mitred), to fit snugly into place. The best way to lay this out is on the floor, using chalk lines, outlining the angles and various heights of studs. I even did a little bit of math in order to get the exact length of the top plate – imagine that! Although these walls were smaller, they took a day each to complete because of the added complexity with the angles. We were so glad to be completely done!

To give you some perspective on the process of actually framing a wall, we made a video of the fourth wall coming together. It’s the rake wall on the right hand side of the house, where our guest loft and bathroom will be located.

A few words on window placement: the windows that are located in the loft areas were easy to position, because we needed them as high as they could go in order to have as much wall/floor space as possible up there. The windows on the main floor area were a little trickier. Given that we are having two lofts at either end of the tiny house, we had to find a happy balance between headroom under the loft, headroom in the loft, and the height of counters, and couches. The size of our windows had been decided on, based on our Google Sketch-Up model we had designed. So those were fixed variables that could not be changed at this point; but of course, you can’t have a window intersecting the platform that forms your loft floor. IMG_20150922_145226To make it easier to visualize, we actually got a piece of 2′ x 4′ and suspended it from the tops of our front and back walls using rope, at various heights, until we were happy that we had enough space downstairs and upstairs for everything we needed. At first, we assumed that we were going to install standard height counters (36″ from the ground), but during our window positioning process, we realized that since we are building this ourselves, we can actually venture away from the standards and choose something that fits us better, personally. I did some reading and found out that the standard counter height of 36″ has been around since the early 1900s, at a time when people were on average, much shorter. Ergonomically, the best height for a counter is that which results in your forearms being positioned at a 45° angle when your palms are placed flat on the counter top. Keep in mind – to achieve this, it isn’t how tall you are overall that is important, just the height of your elbow since it is the lower arm that does (or should be doing) all the prep work when at a counter. When a counter is not at the correct height for your body, you will compensate for this unconsciously by changing your position in order to get your arm into the right position for working on the surface. If the angle is greater than 45° (counter is too high), approaching 90°, you will have a tendency to step or lean back a little; and if the angle is smaller than this (counter is too low), you will have a tendency to lean forward. Both of these scenarios end up in pain – upper back and shoulder pain with counters that are too high, and lower back pain with counters that are too low. Here’s a good source that I found very useful on this topic.

We decided that we are going to go with 38″ counter tops, as we are both a little taller, and I do spend a lot of time experimenting and creating in the kitchen. Might as well make it more enjoyable since we have the option! Our kitchen window sill will then be positioned 2″ above the counter height, which means our loft platform allows us a total vertical space of 6’5 1/2″ in the kitchen and bathroom. All our ‘downstairs’ windows are 3′ high, so we positioned them all at the same height from the floor based on this carefully calculated kitchen window position. It works out great for the height of our sectional couch and living room window as well, and the window in the bathroom. Remember to factor in the thickness of your finish flooring when making this decision for yourself!

Once we had all four walls framed, we had to permanently attach them to one another at the corners before we could remove the bracing. This part actually wasn’t incorporated into the plans we bought, but we emailed the designers and they were able to explain what to do via email! Such a relief.

IMG_9656IMG_20150930_120036

 

You basically have to shove the walls into place so that any given corner will be level and square. This was made easier by ratchet-strapping the left wall to one of the axles. Ratchet straps are awesome! Tim and I have been maintaining some really good teamwork throughout the framing process, but of course, we have our ups and downs. We are getting better at being able to read when we’re too tired or too hungry, or experiencing the dreaded h-anger (when you’re so hungry that you start to express anger in a seemingly unwarranted manner)…. ok I’ll admit that I am the bigger victim of feeling hangry (lol). I feel like I’m in a snickers commercial sometimes. I’m just not myself when I’ve worked for 9 hours and I’m hungry! We’ve both become more forgiving with respect to differences of opinion if it means that one of us will be a lot happier if we do something a certain way. Sometimes it is likely unnecessary or redundant, but our comfort level and the gift of being on the same page is totally worth it!!

Wall Framing, The First Hint of a House

Exterior Shell, The Walls

We have been long awaiting the day when we would raise our first wall of the tiny house, and it finally arrived! Right after we finished the subfloor we though we were ready to go, but quickly realized that we needed to do a bit more planning. As I’ve mentioned, we bought the plans to hOMe, built and designed by the Morrisons; however, with the drastic changes we made to the interior floor plan came a few small tweaks to the framing in terms of window positioning and the exact location of the front door. The little tweaks were enough to prevent us from completely following hOMe’s framing plans though, and we had to go back to the drawing board. As a fun little add on before heading back to the house to crack open Google Sketch-up, we decided to lay out our floor plan on our completed subfloor using painter’s tape. Here is the very first tour of our tiny house, on YouTube!

So, we went back to the drawing board and confirmed the position of each and every stud, and the exact position of each window and door. Tim is the SketchUp guy, so he worked on this, and it was very time consuming. I would highly recommend this software program though, it has been instrumental in our planning. Tim will write a post about his experience with it soon. We made an estimate for how many 2″ x 4″s we IMG_9489would need, and the number of those that would be 8′, 10′, 12′, 14′ and 16′ long.
The next day, we purchased the 2″ x 4″s, and organized them into stacks according to length, under our trailer – a great way to keep them out of the way and accessible at the same time. At that point, there really wasn’t anything standing between us and our first wall anymore. I don’t know why this was so intimidating… I feel like everything up to this point was just manual labour, that really anyone could do if they have time and willingness. There was something about the framing though that make me feel like we should have someone else there to at least supervise. As it turns out, of course, my worry was all for naught. Framing is SUPER fun, and very straight forward once you just dive into it. It’s sort of comparable to a puzzle of sorts, figuring out where everything goes and each piece fitting perfectly with its neighbours.

Labelled photo of framing for one of our windows. The bottom plate is down below the field of view. I love Microsoft Paint :)

Labelled photo of framing for one of our windows. The bottom plate is down below the field of view. I love Microsoft Paint 🙂

I’m no carpenter, but all you really need to know is that there are four types of studs: a regular stud, a king stud, a trimmer stud, and a cripple stud. Regular studs run through the entire wall space from the bottom plate to the top plate, and provide the structural skeleton of your wall. Often, they’re positioned on 16″ centres, but in our build we are using 24″ inch centres. The remaining three types are used to handle windows and doors. Since windows and doors are not meant to be structural, load bearing surfaces, they need help from the framing. The window header acts like a bridge that runs over the top of the window, transferring the above load to two trimmer studs at either end of the window. Trimmer studs run from top plate to bottom plate but they pinch a header, and in the case of a window, they also pinch a sill. This breaks the trimmer into three pieces. Trimmer studs are also called jack studs by some people, and they are always buddied up with king studs. King studs, one on each side of the window (outside the trimmers, header and sill) tie together the entire window framing assembly to keep it all nice and straight, and add additional rigidity.

Cripple studs are just like regular studs, except they run from the bottom plate up to a window sill, OR from the top plate down to a header. They are positioned on the ever important 24″ centre lines, and would normally run all the way through the wall space, but windows and doors get in the way sometimes!

Google Sketch-Up framing model open on the laptop, and laying out our studs according to the plan.

Google Sketch-Up framing model open on the laptop, and laying out our studs according to the plan.

It is possible for a window and a door (or two windows!) to share king studs, which we did on both sides of our front door. If one of your window/door assembly studs lands close to a 24″ centre, it may be tempting to forgo putting in a cripple or another regular stud, but it is really important to do it anyway. When it comes time to put the exterior (and interior for that matter) sheathing up, you need to have studs right on those intervals as a nailing surface. If you don’t, you’ll have floating edges of plywood, and that will create major weaknesses in your wall with respect to moisture, and structural integrity. WITH that said though, it is possible for a king or trimmer stud to land on a 24″ centre, and act as a nailing surface for the sheathing. We also had this situation many times in our design, which is great, because studs that run double duty let us use less wood, and the wall is that much lighter.

18" (height) x 60" (width) window header dimensions.

18″ (height) x 60″ (width) window header dimensions.

 

 

A note on headers: the size of a header is proportional to the width of the opening it is bridging. The instructions in our plans communicated that a 4′ wide opening would need a 4″ x 4″ header, a 6′ wide opening would need a 4″ x 6″ header, an 8′ wide opening would need a 4″ x 8″ header, and so on. Of course, like regular ol’ 2″ x 4″s, all these call outs in reality are 1/2″ smaller in both directions. It seems though that you can’t always buy wood of these dimensions, so you have to get creative. The three windows that go along the top of our front wall are all 5′ wide, so we constructed 4″ x 6″ headers using two 2″ x 6″s, with a strip of 1/2″ plywood sandwiched in between. The three pieces were nailed together liberally.

First piece of the front wall, ready to raise.

First piece of the front wall, ready to raise.

So, with that information, we went about building the first piece of our wall, flat on the deck of the trailer. Once it was built, we then lifted it up and stood it in place where it needed to go. From start to finish, this first 16′ long piece took us two days to complete. The second piece, which was just over 12′ took us only 7 hours to build and raise. Thank you, learning curve 🙂 It’s important to have a brace ready to go once you get your wall raised, so it can stay in place without needing someone to hold it. It’s also equally important to nail on some blocks to the edge of the subfloor, to prevent the wall from sliding off the edge of the trailer when raising it.

Wall #1!

Wall #1!

IMG_20150918_222710

Tim, securing one piece of a wall to another. Using a ratchet strap around two studs of the adjoining pieces allows you get everything nice a snug before driving nails.

Tim, securing one piece of a wall to another. Using a ratchet strap around two studs of the adjoining pieces allows you get everything nice and snug before driving nails.

 

Tying the two pieces of wall together to form one cohesive unit wasn’t too hard. We are using what’s called a double top plate, which means that for each piece of adjoining wall, there’s an extra 2″x4″ stacked on top that is either longer or shorter than the regular top plate. Our first piece of wall was 16′ long, with a 12’3″ double top plate stacked on top. Our second piece of wall was 12’3″ with a 16′ double top plate stacked on top. When the two pieces come together, we can nail the double top plates together from above, and the seam between the two lies staggered and away from the seam of the two pieces of wall.

View from the tongue end of the trailer, front wall is on the right and back wall is on the left.

View from the tongue end of the trailer, front wall is on the right and back wall is on the left.

As you can see in the picture, the front wall is higher than the back wall – a difference of about 1’3″. This difference allows the roof to be sloped towards the back of the house, which is essential to prevent rain or snow from pooling on the roof. It makes sense for the slope to angle away from the front door too, so you don’t get soaked trying to get in on rainy days. The angle of the slope is what’s called a 2 and 12 (for every 12″ run/horizontal, there is a rise/vertical change of 2″) which converts to about 10°. A lot of people building tiny houses, and any house for that matter, use a gable style roof (peak in the centre, sloping down to either side). We think it makes more sense to go with the style in our plan, also known as a shed roof, because it allows the maximum amount of head room in the loft to be concentrated at one end. If you’re sitting in bed, chances are you’re going to be leaning against the headboard / wall, and your feet will be at the opposite end, so this configuration for head room is the best. Having the maximum head space in the centre would work if you like sitting in the centre of your bed, but really, when do you ever do that?

IMG_9564